2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009

20 December 2017

The Use of Biomass Halves the Amount of Carbon Stored by Plants...

04 December 2017

Surprise in the Kangaroo Family Tree – An Outsider Is a Close Relative, After All...

17 November 2017

European forests might not be realizing their full potential ...

14 November 2017

Partnertausch als Überlebensstrategie – Flechten passen sich durch Algenwechsel an neues Klima an ...

20 October 2017

Shallow soils promote savannas in South America...

07 September 2017

Rising winter temperatures contributed to the decline of the brown bear in Europe...

03 July 2017

Elevational range limits of alpine trees not solely determined by climate...

30 June 2017

Areas affected by fire are decreasing globally...

13 June 2017

Global hotspots for alien species are island and coastals regions...

31 May 2017

Downsizing in animal communities leads to functional decay in tropical forests...

24 May 2017

Zebras follow their memory when migrating ...

11 May 2017

Picky birds are most flexible...

09 May 2017

Open Day at Senckenberg Biodiversity and Climate Research Centre...

27 April 2017

Auf dem Gipfel der Evolution – Flechten bei der Artbildung zugeschaut...

19 April 2017

Bears breed across species borders...

30 March 2017

Ground water depletion due to international trade threathens food supply world-wide...

27 March 2017

Methan emissions from cows could rise by 70 per cent until 2050...

27 February 2017

New insights into the mechanisms into how ungulates got bigger in the Neogene...

20 February 2017

More warm-dwelling Animals and Plants as a Result of Climate Change ...

15 February 2017

Alien species on the rise worldwide...

02 February 2017

Partnerwahl bei Flechten – Warmes Klima macht wählerisch...

17 January 2017

Spiel mit dem Feuer – wie Eiszeitjäger das Landschaftsbild Europas prägten...

11 January 2017

How far do invasive species travel?...

04 January 2017

Domino effect: The loss of plant species triggers the extinction of animals...

Press Releases

The Use of Biomass Halves the Amount of Carbon Stored by Plants

Frankfurt am Main, Germany, 12/20/2017. According to a recent study in the scientific journal “Nature,” plants in terrestrial ecosystems store approximately 450 billion tons of carbon worldwide – less than half of the amount theoretically possible. This is due to the use of biomass by humans. Surprisingly, forestry and agriculture in natural forests and grasslands have a similarly pronounced effect in this regard as the cutting down forests for farmland. Scientists at Senckenberg, Klagenfurt University, and the Max Planck Institutes of Biogeochemistry and Meteorology caution that the increased use of biomass envisaged by the climate policy may therefore not always be climate-neutral.

Plants store carbon, which makes them an important climate factor. The effects of deforestation for farmland on the earth’s carbon balance are rather well quantified. The effects of other land use practices, however, have only been poorly studied to date. For the first time, scientists have now calculated a comprehensive set of land uses affects the amount of carbon stored by plants.

According to their analysis, plants in terrestrial ecosystems currently store about 450 billion tons of carbon worldwide – significantly less than potentially possible. “In a hypothetical world without land use, the vegetation would store twice as much carbon,” explains Dr. Thomas Kastner of the Senckenberg Biodiversity and Climate Research Centre, one of the participants in the study.

Roughly half of the difference between the potentially and actually stored carbon volume results from the deforestation and other changes in land cover (53-58 %), while the other half is due to the effects of forestry and the grazing of natural grasslands (42-47 %), two thirds of which can be attributed to forestry.

According to the study’s leading author, Professor Karl-Heinz Erb of Klagenfurt University, “The effects of forestry and pasture farming on the volume of carbon stored by plants are drastically underestimated. Managed forests store about one third less carbon than untouched natural forests. Halting deforestation is essential, but not sufficient to mitigate the climate change. It is important to shift the focus from the protection of forested areas to the protection of forest functions, including carbon storage.”

The results are highly controversial in regard to the current climate policy. This policy envisages an increased use of biomass in order to reduce global warming. However, this may turn out to be trap: While biomass as a raw material replaces fossil resources in the energy supply, its use may cause significant greenhouse gases emissions from the land system. This is supported by the fact that a large amount of such emissions occurred prior to 1880 – i.e., before the industrialization with its emissions from fossil energy – as documented by historical data.
 
The authors identify significant uncertainties and data gaps regarding the protection of carbon stocks in the vegetation as an additional problem. “At this time, we are only able to verify reforestation efforts and other measures increase the biomass stock in temperate climate zones with sufficient certainty.. However, in this region, the achievable effects are rather small. Tropical forests hold the largest potential, yet to date large uncertainties hamper the verification increases in carbon storage Therefore, improved monitoring is required in order to verify the benefits of such measures,” adds Kastner in conclusion.  

Press Images

Forestry
Human biomass utilization reduces global carbon stocks in vegetation by 50%. Copyright: Biodiversity Exploratories / Jörg Hailer

Press images may be used at no cost for editorial reporting, provided that the original author’s name is published, as well. The images may only be passed on to third parties in the context of current reporting.

Contact
Dr. Thomas Kastner
Senckenberg Biodiversity and Climate Research Centre
Tel +49 (0)69- 7542 1807
Thomas.kastner@senckenberg.de

Sabine Wendler
Press officer
Senckenberg Biodiversity and Climate Research Centre
Phone +49 (0)69- 7542 1818
pressestelle@senckenberg.de

Publication
Erb, K.-H. et al. (2017): Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature, doi; doi:10.1038/nature25138

To study and understand nature with its limitless diversity of living creatures and to preserve and manage it in a sustainable fashion as the basis of life for future generations – this has been the goal of the Senckenberg Gesellschaft für Naturforschung (Senckenberg Nature Research Society) for 200 years. This integrative “geobiodiversity research” and the dissemination of research and science are among Senckenberg’s main tasks. Three nature museums in Frankfurt, Görlitz and Dresden display the diversity of life and the earth’s development over millions of years. The Senckenberg Nature Research Society is a member of the Leibniz Association. The Senckenberg Nature Museum in Frankfurt am Main is supported by the City of Frankfurt am Main as well as numerous other partners. Additional information can be found at www.senckenberg.de

200 years of Senckenberg! 2017 marks Senckenberg’s anniversary year. For 200 years, the society, which was founded in 1817, has dedicated itself to nature research with curiosity, passion and involvement. Senckenberg will celebrate its 200-year success story with a colorful program consisting of numerous events, specially designed exhibitions and a grand museum party in the fall. Of course, the program also involves the presentation of current research and future projects. Additional information can be found at: www.200jahresenckenberg.